Shavenbaby Couples Patterning to Epidermal Cell Shape Control
نویسندگان
چکیده
It is well established that developmental programs act during embryogenesis to determine animal morphogenesis. How these developmental cues produce specific cell shape during morphogenesis, however, has remained elusive. We addressed this question by studying the morphological differentiation of the Drosophila epidermis, governed by a well-known circuit of regulators leading to a stereotyped pattern of smooth cells and cells forming actin-rich extensions (trichomes). It was shown that the transcription factor Shavenbaby plays a pivotal role in the formation of trichomes and underlies all examined cases of the evolutionary diversification of their pattern. To gain insight into the mechanisms of morphological differentiation, we sought to identify shavenbaby's downstream targets. We show here that Shavenbaby controls epidermal cell shape, through the transcriptional activation of different classes of cellular effectors, directly contributing to the organization of actin filaments, regulation of the extracellular matrix, and modification of the cuticle. Individual inactivation of shavenbaby's targets produces distinct trichome defects and only their simultaneous inactivation prevent trichome formation. Our data show that shavenbaby governs an evolutionarily conserved developmental module consisting of a set of genes collectively responsible for trichome formation, shedding new light on molecular mechanisms acting during morphogenesis and the way they can influence evolution of animal forms.
منابع مشابه
The Ovo/Shavenbaby transcription factor specifies actin remodelling during epidermal differentiation in Drosophila
In Drosophila, differentiation of the epidermis results in a stereotyped array of cells with F-actin-based extensions at their apical face. We identified Ovo/Shavenbaby (Svb) as a transcription factor that governs changes in epidermal cell shape. Svb is required for the formation of apical extensions and cells deficient in svb differentiate a smooth surface. In both the embryo and the adult, we...
متن کاملSmall peptides switch the transcriptional activity of Shavenbaby during Drosophila embryogenesis.
A substantial proportion of eukaryotic transcripts are considered to be noncoding RNAs because they contain only short open reading frames (sORFs). Recent findings suggest, however, that some sORFs encode small bioactive peptides. Here, we show that peptides of 11 to 32 amino acids encoded by the polished rice (pri) sORF gene control epidermal differentiation in Drosophila by modifying the tran...
متن کاملHow do cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis.
Because the plant epidermis is readily accessible and consists of few cell types on most organs, the epidermis has become a well-studied model for cell differentiation and cell patterning in plants. Recent advances in our understanding of the development of three epidermal cell types, trichomes, root hairs, and stomata, allow a comparison of the underlying patterning mechanisms. In Arabidopsis,...
متن کاملSABRE is required for stabilization of root hair patterning in Arabidopsis thaliana.
Patterned differentiation of distinct cell types is essential for the development of multicellular organisms. The root epidermis of Arabidopsis thaliana is composed of alternating files of root hair and non-hair cells and represents a model system for studying the control of cell-fate acquisition. Epidermal cell fate is regulated by a network of genes that translate positional information from ...
متن کاملWEREWOLF, a MYB-Related Protein in Arabidopsis, Is a Position-Dependent Regulator of Epidermal Cell Patterning
The formation of the root epidermis of Arabidopsis provides a simple and elegant model for the analysis of cell patterning. A novel gene, WEREWOLF (WER), is described here that is required for position-dependent patterning of the epidermal cell types. The WER gene encodes a MYB-type protein and is preferentially expressed within cells destined to adopt the non-hair fate. Furthermore, WER is sho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Biology
دوره 4 شماره
صفحات -
تاریخ انتشار 2006